Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.381
Filtrar
1.
Curr Biol ; 34(7): 1549-1560.e3, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38458192

RESUMO

The successful pursuit of goals requires the coordinated execution and termination of actions that lead to positive outcomes. This process relies on motivational states that are guided by internal drivers, such as hunger or fear. However, the mechanisms by which the brain tracks motivational states to shape instrumental actions are not fully understood. The paraventricular nucleus of the thalamus (PVT) is a midline thalamic nucleus that shapes motivated behaviors via its projections to the nucleus accumbens (NAc)1,2,3,4,5,6,7,8 and monitors internal state via interoceptive inputs from the hypothalamus and brainstem.3,9,10,11,12,13,14 Recent studies indicate that the PVT can be subdivided into two major neuronal subpopulations, namely PVTD2(+) and PVTD2(-), which differ in genetic identity, functionality, and anatomical connectivity to other brain regions, including the NAc.4,15,16 In this study, we used fiber photometry to investigate the in vivo dynamics of these two distinct PVT neuronal types in mice performing a foraging-like behavioral task. We discovered that PVTD2(+) and PVTD2(-) neurons encode the execution and termination of goal-oriented actions, respectively. Furthermore, activity in the PVTD2(+) neuronal population mirrored motivation parameters such as vigor and satiety. Similarly, PVTD2(-) neurons also mirrored some of these parameters, but to a much lesser extent. Importantly, these features were largely preserved when activity in PVT projections to the NAc was selectively assessed. Collectively, our results highlight the existence of two parallel thalamo-striatal projections that participate in the dynamic regulation of goal pursuits and provide insight into the mechanisms by which the brain tracks motivational states to shape instrumental actions.


Assuntos
Motivação , Núcleo Accumbens , Camundongos , Animais , Núcleo Accumbens/fisiologia , Tálamo , Núcleos da Linha Média do Tálamo/fisiologia , Hipotálamo
2.
Neuron ; 112(3): 333-335, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38330898

RESUMO

In this issue of Neuron, Fetcho, Parekh, et al.1 show that neurons in the anterior cingulate cortex (ACC) projecting to the nucleus accumbens (NAc) are essential for integrating reward and effort evaluation in mice, and that this circuit is sensitive to exposure to stress hormones.


Assuntos
Giro do Cíngulo , Núcleo Accumbens , Camundongos , Animais , Núcleo Accumbens/fisiologia , Giro do Cíngulo/fisiologia , Neurônios
3.
Addict Biol ; 29(2): e13378, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38334006

RESUMO

Alcohol use disorder (AUD) is heritable. Thus, young adults with positive family histories represent an at-risk group relative to those without a family history, and if studied at a time when both groups have similar levels of alcohol use, it provides an opportunity to identify neural processing patterns associated with risk for AUD. Previous studies have shown that diminished response to potential reward is associated with genetic risk for AUD, but it is unclear how threat may modulate this response. We used a modified Monetary Incentive Delay task during fMRI to examine neural correlates of the interaction between threat and reward anticipation in a sample of young adults with (n = 31) and without (n = 44) family histories of harmful alcohol use. We found an interaction (p = 0.048) between cue and group in the right nucleus accumbens where the family history positive group showed less differentiation to the anticipation of gaining $5 and losing $5 relative to gaining $0. The family history-positive group also reported less excitement for trials to gain $5 relative to gaining $0 (p < 0.001). Family history-positive individuals showed less activation in the left insula during both safe and threat blocks compared to family history-negative individuals (p = 0.005), but the groups did not differ as a function of threat (p > 0.70). Young adults with, relative to without, enriched risk for AUD may have diminished reward processing via both neural and behavioural markers to potential rewarding and negative consequences. Neural response to threat may not be a contributing factor to risk at this stage.


Assuntos
Alcoolismo , Humanos , Adulto Jovem , Alcoolismo/diagnóstico por imagem , Núcleo Accumbens/fisiologia , Recompensa , Motivação , Consumo de Bebidas Alcoólicas , Imageamento por Ressonância Magnética
4.
Eur J Neurosci ; 59(7): 1500-1518, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38185906

RESUMO

Discrete alcohol cues and contexts are relapse triggers for people with alcohol use disorder exerting particularly powerful control over behaviour when they co-occur. Here, we investigated the neural substrates subserving the capacity for alcohol-associated contexts to elevate responding to an alcohol-predictive conditioned stimulus (CS). Specifically, rats were trained in a distinct 'alcohol context' to respond by entering a fluid port during a discrete auditory CS that predicted the delivery of alcohol and were familiarized with a 'neutral context' wherein alcohol was never available. When conditioned CS responding was tested by presenting the CS without alcohol, we found that augmenting glutamatergic activity in the nucleus accumbens (NAc) shell by microinfusing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) reduced responding to an alcohol CS in an alcohol, but not neutral, context. Further, AMPA microinfusion robustly affected behaviour, attenuating the number, duration and latency of CS responses selectively in the alcohol context. Although dopaminergic inputs to the NAc shell were previously shown to be necessary for CS responding in an alcohol context, here, chemogenetic excitation of ventral tegmental area (VTA) dopamine neurons and their inputs to the NAc shell did not affect CS responding. Critically, chemogenetic excitation of VTA dopamine neurons affected feeding behaviour and elevated c-fos immunoreactivity in the VTA and NAc shell, validating the chemogenetic approach. These findings enrich our understanding of the substrates underlying Pavlovian responding for alcohol and reveal that the capacity for contexts to modulate responding to discrete alcohol cues is delicately underpinned by the NAc shell.


Assuntos
Sinais (Psicologia) , Núcleo Accumbens , Humanos , Ratos , Animais , Núcleo Accumbens/fisiologia , Ratos Long-Evans , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Etanol/farmacologia , Condicionamento Operante/fisiologia
5.
Nat Commun ; 15(1): 750, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286800

RESUMO

The hippocampus is pivotal in integrating emotional processing, learning, memory, and reward-related behaviors. The dorsal hippocampus (dHPC) is particularly crucial for episodic, spatial, and associative memory, and has been shown to be necessary for context- and cue-associated reward behaviors. The nucleus accumbens (NAc), a central structure in the mesolimbic reward pathway, integrates the salience of aversive and rewarding stimuli. Despite extensive research on dHPC→NAc direct projections, their sufficiency in driving reinforcement and reward-related behavior remains to be determined. Our study establishes that activating excitatory neurons in the dHPC is sufficient to induce reinforcing behaviors through its direct projections to the dorso-medial subregion of the NAc shell (dmNAcSh). Notably, dynorphin-containing neurons specifically contribute to dHPC-driven reinforcing behavior, even though both dmNAcSh dynorphin- and enkephalin-containing neurons are activated with dHPC stimulation. Our findings unveil a pathway governing reinforcement, advancing our understanding of the hippocampal circuity's role in reward-seeking behaviors.


Assuntos
Dinorfinas , Núcleo Accumbens , Éteres Fosfolipídicos , Núcleo Accumbens/fisiologia , Hipocampo/fisiologia , Recompensa , Neurônios/fisiologia
6.
Brain Struct Funct ; 229(2): 403-429, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38193917

RESUMO

The influence of novelty on feeding behavior is significant and can override both homeostatic and hedonic drives due to the uncertainty of potential danger. Previous work found that novel food hypophagia is enhanced in a novel environment and that males habituate faster than females. The current study's aim was to identify the neural substrates of separate effects of food and context novelty. Adult male and female rats were tested for consumption of a novel or familiar food in either a familiar or in a novel context. Test-induced Fos expression was measured in the amygdalar, thalamic, striatal, and prefrontal cortex regions that are important for appetitive responding, contextual processing, and reward motivation. Food and context novelty induced strikingly different activation patterns. Novel context induced Fos robustly in almost every region analyzed, including the central (CEA) and basolateral complex nuclei of the amygdala, the thalamic paraventricular (PVT) and reuniens nuclei, the nucleus accumbens (ACB), the medial prefrontal cortex prelimbic and infralimbic areas, and the dorsal agranular insular cortex (AI). Novel food induced Fos in a few select regions: the CEA, anterior basomedial nucleus of the amygdala, anterior PVT, and posterior AI. There were also sex differences in activation patterns. The capsular and lateral CEA had greater activation for male groups and the anterior PVT, ACB ventral core and shell had greater activation for female groups. These activation patterns and correlations between regions, suggest that distinct functional circuitries control feeding behavior when food is novel and when eating occurs in a novel environment.


Assuntos
Tonsila do Cerebelo , Córtex Pré-Frontal , Ratos , Feminino , Masculino , Animais , Córtex Pré-Frontal/fisiologia , Tonsila do Cerebelo/fisiologia , Tálamo/fisiologia , Prosencéfalo , Núcleo Accumbens/fisiologia
7.
J Pain ; 25(2): 331-349, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37673193

RESUMO

Persistent pain conditions and sleep disorders are public health problems worldwide. It is widely accepted that sleep disruption increases pain sensitivity; however, the underlying mechanisms are poorly understood. In this study, we used a protocol of 6 hours a day of total sleep deprivation for 3 days in rats to advance the understanding of these mechanisms. We focused on gender differences and the dopaminergic mesocorticolimbic system. The findings demonstrated that sleep restriction (SR) increased pain sensitivity in a similar way in males and females, without inducing a significant stress response. This pronociceptive effect depends on a nucleus accumbens (NAc) neuronal ensemble recruited during SR and on the integrity of the anterior cingulate cortex (ACC). Data on indirect dopaminergic parameters, dopamine transporter glycosylation, and dopamine and cyclic adenosine monophosphate (AMP)-regulated phosphoprotein-32 phosphorylation, as well as dopamine, serotonin, and norepinephrine levels, suggest that dopaminergic function decreases in the NAc and ACC after SR. Complementarily, pharmacological activation of dopamine D2, but not D1 receptors either in the ACC or in the NAc prevents SR from increasing pain sensitivity. The ACC and NAc are the main targets of dopaminergic mesocorticolimbic projections with a key role in pain modulation. This study showed their integrative role in the pronociceptive effect of SR, pointing to dopamine D2 receptors as a potential target for pain management in patients with sleep disorders. These findings narrow the focus of future studies on the mechanisms by which sleep impairment increases pain sensitivity. PERSPECTIVE: This study demonstrates that the pronociceptive effect of SR affects similarly males and females and depends on a NAc neuronal ensemble recruited during SR and on the integrity of the ACC. Findings on dopaminergic function support dopamine D2 receptors as targets for pain management in sleep disorders patients.


Assuntos
Dopamina , Núcleo Accumbens , Humanos , Masculino , Ratos , Animais , Núcleo Accumbens/fisiologia , Dopamina/farmacologia , Giro do Cíngulo , Dor , Privação do Sono/complicações
8.
Brain Struct Funct ; 229(1): 97-114, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37910300

RESUMO

The basolateral amygdala (BLA) and the nucleus accumbens core (NAcc) share some similar behavioral functions, such as associative learning, Pavlovian to instrumental transfer, and choice behavior. However, their prefrontal anatomical inputs have not been well characterized before, especially the collateral projections. In this study, we analyzed the distribution and collateralization of projections to the BLA and the NAcc from the prefrontal cortices (PFC), including the prelimbic (PL) and the infralimbic (IL) divisions of the medial prefrontal cortex (mPFC) and the subregions of the orbitofrontal cortex (OFC), such as the medial OFC (MO), the lateral OFC (LO), and the ventral OFC (VO). Double retrograde tracing approach was used, in which Cholera toxin subunit B conjugated with the Alexa Fluor 488 (CTB-AF488) or Alexa Fluor 594 (CTB-AF594) were unilaterally injected into the BLA and the NAcc, respectively, in male Long-Evans rats (n = 6). Among the sampled neurons, prefrontal projection to the BLA or the NAcc is more robust on the ipsilateral side, and more robust from the PL, the IL, and the MO compared to from the LO and the VO. The majority of the projections from the PFC to the BLA and/or the NAcc are confined in deep layer. In addition, for each of the prefrontal areas, about 15-25% BLA-projecting neurons send collateral projections to the NAcc, and vice versa. In conclusion, our data suggested that prefrontal control over the BLA and the NAcc is not entirely independent. The functional importance of the collateral projections awaits further examination.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Núcleo Accumbens , Ratos , Masculino , Animais , Núcleo Accumbens/fisiologia , Ratos Long-Evans , Córtex Pré-Frontal/fisiologia , Córtex Cerebral
9.
Steroids ; 201: 109344, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979822

RESUMO

The striatal brain regions encompassing the nucleus accumbens core (NAcc), shell (NAcs) and caudate-putamen (CPu) regulate cognitive functions including motivated behaviors, habit, learning, and sensorimotor action, among others. Sex steroid hormone sensitivity and sex differences have been documented in all of these functions in both normative and pathological contexts, including anxiety, depression and addiction. The neurotransmitter glutamate has been implicated in regulating these behaviors as well as striatal physiology, and there are likewise documented sex differences in glutamate action upon the striatal output neurons, the medium spiny neurons (MSNs). Here we review the available data regarding the role of steroid sex hormones such as 17ß-estradiol (estradiol), progesterone, and testosterone in rapidly modulating MSN glutamatergic synapse properties, presented in the context of the estrous cycle as appropriate. Estradiol action upon glutamatergic synapse properties in female NAcc MSNs is most comprehensively discussed. In the female NAcc, MSNs exhibit development period-specific sex differences and estrous cycle variations in glutamatergic synapse properties as shown by multiple analyses, including that of miniature excitatory postsynaptic currents (mEPSCs). Estrous cycle-differences in NAcc MSN mEPSCs can be mimicked by acute exposure to estradiol or an ERα agonist. The available evidence, or lack thereof, is also discussed concerning estrogen action upon MSN glutamatergic synapse in the other striatal regions as well as the underexplored roles of progesterone and testosterone. We conclude that there is strong evidence regarding estradiol action upon glutamatergic synapse function in female NAcs MSNs and call for more research regarding other hormones and striatal regions.


Assuntos
Núcleo Accumbens , Progesterona , Feminino , Humanos , Masculino , Encéfalo , Estradiol/farmacologia , Ciclo Estral , Glutamatos , Núcleo Accumbens/fisiologia , Putamen/química , Sinapses , Testosterona , Núcleo Caudado/química , Núcleo Caudado/fisiologia
10.
Neuron ; 112(3): 473-487.e4, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37963470

RESUMO

Effort valuation-a process for selecting actions based on the anticipated value of rewarding outcomes and expectations about the work required to obtain them-plays a fundamental role in decision-making. Effort valuation is disrupted in chronic stress states and is supported by the anterior cingulate cortex (ACC), but the circuit-level mechanisms by which the ACC regulates effort-based decision-making are unclear. Here, we show that ACC neurons projecting to the nucleus accumbens (ACC-NAc) play a critical role in effort valuation behavior in mice. Activity in ACC-NAc cells integrates both reward- and effort-related information, encoding a reward-related signal that scales with effort requirements and is necessary for supporting future effortful decisions. Chronic corticosterone exposure reduces motivation, suppresses effortful reward-seeking, and disrupts ACC-NAc signals. Together, our results delineate a stress-sensitive ACC-NAc circuit that supports effortful reward-seeking behavior by integrating reward and effort signals and reinforcing effort allocation in the service of maximizing reward.


Assuntos
Motivação , Núcleo Accumbens , Camundongos , Animais , Núcleo Accumbens/fisiologia , Recompensa , Neurônios/fisiologia , Giro do Cíngulo/fisiologia , Tomada de Decisões/fisiologia
11.
Neuron ; 112(3): 500-514.e5, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38016471

RESUMO

Striatal dopamine (DA) release has long been linked to reward processing, but it remains controversial whether DA release reflects costs or benefits and how these signals vary with motivation. Here, we measure DA release in the nucleus accumbens (NAc) and dorsolateral striatum (DLS) while independently varying costs and benefits and apply behavioral economic principles to determine a mouse's level of motivation. We reveal that DA release in both structures incorporates both reward magnitude and sunk cost. Surprisingly, motivation was inversely correlated with reward-evoked DA release. Furthermore, optogenetically evoked DA release was also heavily dependent on sunk cost. Our results reconcile previous disparate findings by demonstrating that striatal DA release simultaneously encodes cost, benefit, and motivation but in distinct manners over different timescales. Future work will be necessary to determine whether the reduction in phasic DA release in highly motivated animals is due to changes in tonic DA levels.


Assuntos
Dopamina , Motivação , Camundongos , Animais , Dopamina/fisiologia , Corpo Estriado/fisiologia , Neostriado , Núcleo Accumbens/fisiologia , Recompensa
12.
Artigo em Inglês | MEDLINE | ID: mdl-37871776

RESUMO

BACKGROUND: Childhood maltreatment is associated with reduced activation of the nucleus accumbens, a central region in the reward network, and overactivity in the amygdala, a key region in threat processing. However, the long-lasting impact of these associations in the context of later-life stress is not well understood. The current study explored the association between childhood threat and deprivation and functional connectivity of threat and reward regions in an adult trauma sample. METHODS: Trauma survivors (N = 169; mean age [SD] = 32.2 [10.3] years; female = 55.6%) were recruited from a level I trauma center. Two weeks after injury, participants completed the Childhood Trauma Questionnaire (measuring experiences of threat and deprivation) and underwent resting-state functional magnetic resonance imaging. Seed-to-voxel analyses evaluated the effect of childhood threat and deprivation on amygdala and nucleus accumbens resting-state connectivity. RESULTS: Higher levels of threat were associated with increased connectivity between the right nucleus accumbens with temporal fusiform gyrus/parahippocampal gyrus and the left amygdala and the precuneus (false discovery rate-corrected p < .05). After controlling for posttraumatic symptoms 2 weeks posttrauma and lifetime trauma exposure, only the nucleus accumbens findings survived. There were no significant relationships between experiences of childhood deprivation and amygdala or nucleus accumbens connectivity. CONCLUSIONS: Experiences of threat are associated with increased nucleus accumbens and amygdala connectivity, which may reflect a preparedness to detect salient and visual stimuli. This may also reflect a propensity toward dysregulated reward processing. Overall, these results suggest that childhood threat may be contributing to aberrant neural baseline reward and threat sensitivity later in life in an adult trauma sample.


Assuntos
Imageamento por Ressonância Magnética , Núcleo Accumbens , Testes Psicológicos , Autorrelato , Humanos , Adulto , Feminino , Criança , Núcleo Accumbens/fisiologia , Tonsila do Cerebelo , Recompensa
13.
Neuron ; 112(4): 611-627.e8, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38086372

RESUMO

Social animals compete for limited resources, resulting in a social hierarchy. Although different neuronal subpopulations in the medial prefrontal cortex (mPFC), which has been mechanistically implicated in social dominance behavior, encode distinct social competition behaviors, their identities and associated molecular underpinnings have not yet been identified. In this study, we found that mPFC neurons projecting to the nucleus accumbens (mPFC-NAc) encode social winning behavior, whereas mPFC neurons projecting to the ventral tegmental area (mPFC-VTA) encode social losing behavior. High-throughput single-cell transcriptomic analysis and projection-specific genetic manipulation revealed that the expression level of POU domain, class 3, transcription factor 1 (Pou3f1) in mPFC-VTA neurons controls social hierarchy. Optogenetic activation of mPFC-VTA neurons increases Pou3f1 expression and lowers social rank. Together, these data demonstrate that discrete activity and gene expression in separate mPFC projections oppositely orchestrate social competition and hierarchy.


Assuntos
Núcleo Accumbens , Área Tegmentar Ventral , Animais , Área Tegmentar Ventral/fisiologia , Núcleo Accumbens/fisiologia , Comportamento Social , Córtex Pré-Frontal/fisiologia , Neurônios
14.
Neuron ; 112(5): 772-785.e9, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38141605

RESUMO

Lack of behavioral suppression typifies substance use disorders, yet the neural circuit underpinnings of drug-induced behavioral disinhibition remain unclear. Here, we employ deep-brain two-photon calcium imaging in heroin self-administering mice, longitudinally tracking adaptations within a paraventricular thalamus to nucleus accumbens behavioral inhibition circuit from the onset of heroin use to reinstatement. We find that select thalamo-accumbal neuronal ensembles become profoundly hypoactive across the development of heroin seeking and use. Electrophysiological experiments further reveal persistent adaptations at thalamo-accumbal parvalbumin interneuronal synapses, whereas functional rescue of these synapses prevents multiple triggers from initiating reinstatement of heroin seeking. Finally, we find an enrichment of µ-opioid receptors in output- and cell-type-specific paraventricular thalamic neurons, which provide a mechanism for heroin-induced synaptic plasticity and behavioral disinhibition. These findings reveal key circuit adaptations that underlie behavioral disinhibition in opioid dependence and further suggest that recovery of this system would reduce relapse susceptibility.


Assuntos
Heroína , Transtornos Relacionados ao Uso de Opioides , Ratos , Camundongos , Animais , Heroína/farmacologia , Ratos Sprague-Dawley , Autoadministração/métodos , Neurônios , Núcleo Accumbens/fisiologia
15.
Physiol Behav ; 273: 114410, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977252

RESUMO

Social stress plays an important role in the etiology of many neuropsychiatric disorders and can lead to a variety of behavioral deficits such as social withdrawal. One way that social stress may contribute to psychiatric disorders is by reducing social motivation and the rewarding properties of social interactions. We investigated the impact of social stress on social reward in the context of winning versus losing agonistic encounters in Syrian hamsters (Mesocricetus auratus). First, we tested the hypothesis that social stress resulting from either stable low, or subordinate, social status or from social defeat reduces the rewarding properties of social interactions. Using an Operant Social Preference (OSP) task to measure social reward/motivation, we found that both subordinate and socially defeated males made significantly fewer entries into chambers containing novel, same-sex conspecifics compared to males who were dominant (i.e., stably won the agonistic encounters). In females, however, there were no differences in social entries between winners and losers. In a second experiment, we found more activation of the mesolimbic dopamine system (MDS) as assessed with cFos immunohistochemistry in the lateral ventral tegmental area (lVTA) and the nucleus accumbens (NAc) shell of male winners compared to losers. In females, however, there were no differences in activation in the lVTA between winners and losers. Surprisingly, however, winning females displayed significantly more activation in the NAc shell as compared to losing females, despite the lack of behavioral differences. Thus, behavioral and histological data suggest that there are sex differences in the impact of social status on social reward and associated mesolimbic activation.


Assuntos
Caracteres Sexuais , Status Social , Cricetinae , Animais , Masculino , Feminino , Humanos , Recompensa , Mesocricetus , Núcleo Accumbens/fisiologia , Área Tegmentar Ventral/fisiologia
16.
Pharmacol Res ; 199: 107042, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142878

RESUMO

Drugs acting on dopamine D2 receptors are widely used for the treatment of several neuropsychiatric disorders, including schizophrenia and depression. Social deficits are a core symptom of these disorders. Pharmacological manipulation of dopamine D2 receptors (Drd2), a Gi-coupled subtype of dopamine receptors, in the medial prefrontal cortex (mPFC) has shown that Drd2 is implicated in social behaviors. However, the type of neurons expressing Drd2 in the mPFC and the underlying circuit mechanism regulating social behaviors remain largely unknown. Here, we show that Drd2 were mainly expressed in pyramidal neurons in the mPFC and that the activation of the Gi-pathway in Drd2+ pyramidal neurons impaired social behavior in male mice. In contrast, the knockdown of D2R in pyramidal neurons in the mPFC enhanced social approach behaviors in male mice and selectively facilitated the activation of mPFC neurons projecting to the nucleus accumbens (NAc) during social interaction. Remarkably, optogenetic activation of mPFC-to-NAc-projecting neurons mimicked the effects of conditional D2R knockdown on social behaviors. Altogether, these results demonstrate a cell type-specific role for Drd2 in the mPFC in regulating social behavior, which may be mediated by the mPFC-to-NAc pathway.


Assuntos
Células Piramidais , Receptores de Dopamina D2 , Camundongos , Masculino , Animais , Receptores de Dopamina D2/metabolismo , Células Piramidais/fisiologia , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Núcleo Accumbens/fisiologia , Comportamento Social
17.
Neuron ; 112(5): 835-849.e7, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38134921

RESUMO

At the core of value-based learning is the nucleus accumbens (NAc). D1- and D2-receptor-containing medium spiny neurons (MSNs) in the NAc core are hypothesized to have opposing valence-based roles in behavior. Using optical imaging and manipulation approaches in mice, we show that neither D1 nor D2 MSNs signal valence. D1 MSN responses were evoked by stimuli regardless of valence or contingency. D2 MSNs were evoked by both cues and outcomes, were dynamically changed with learning, and tracked valence-free prediction error at the population and individual neuron level. Finally, D2 MSN responses to cues were necessary for associative learning. Thus, D1 and D2 MSNs work in tandem, rather than in opposition, by signaling specific properties of stimuli to control learning.


Assuntos
Neurônios Espinhosos Médios , Receptores de Dopamina D1 , Camundongos , Animais , Camundongos Transgênicos , Receptores de Dopamina D1/metabolismo , Núcleo Accumbens/fisiologia , Neurônios/fisiologia , Camundongos Endogâmicos C57BL
18.
Biol Sex Differ ; 14(1): 87, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082417

RESUMO

BACKGROUND: The nucleus accumbens (NAc) is an important region in motivation and reward. Glutamatergic inputs from the infralimbic cortex (ILC) to the shell region of the NAc (NAcSh) have been implicated in driving the motivation to seek reward through repeated action-based behavior. While this has primarily been studied in males, observed sex differences in motivational circuitry and behavior suggest that females may be more sensitive to rewarding stimuli. These differences have been implicated for the observed vulnerability in women to substance use disorders. METHODS: We used an optogenetic self-stimulation task in addition to ex vivo electrophysiological recordings of NAcSh neurons in mouse brain slices to investigate potential sex differences in ILC-NAcSh circuitry in reward-seeking behavior. Glutamatergic neurons in the ILC were infected with an AAV delivering DNA encoding for channelrhodopsin. Entering the designated active corner of an open field arena resulted in photostimulation of the ILC terminals in the NAcSh. Self-stimulation occurred during two consecutive days of testing over three consecutive weeks: first for 10 Hz, then 20 Hz, then 30 Hz. Whole-cell recordings of medium spiny neurons in the NAcSh assessed both optogenetically evoked local field potentials and intrinsic excitability. RESULTS: Although both sexes learned to seek the active zone, within the first day, females entered the zone more than males, resulting in a greater amount of photostimulation. Increasing the frequency of optogenetic stimulation amplified female reward-seeking behavior. Males were less sensitive to ILC stimulation, with higher frequencies and repeated days required to increase male reward-seeking behavior. Unexpectedly, ex vivo optogenetic local field potentials in the NAcSh were greater in slices from male animals. In contrast, female medium-spiny neurons (MSNs) displayed significantly greater intrinsic neuronal excitability. CONCLUSIONS: Taken together, these data indicate that there are sex differences in the motivated behavior driven by glutamate within the ILC-NAcSh circuit. Though glutamatergic signaling was greater in males, heightened intrinsic excitability in females appears to drive this sex difference.


The shell region of the nucleus accumbens (NAcSh) is involved in motivation and reward. It receives excitatory glutamatergic inputs from multiple brain regions. One specific region is the infralimbic cortex (ILC), which when activated, influences reward-seeking behavior. While previous research has focused on males, there are inherent sex differences in reward circuitry and reward-seeking behavior. Using an optogenetic self-stimulation task, in addition to ex vivo electrophysiological recordings, we found inherent sex differences in the ILC-NAcSh circuit in behavioral output, synaptic strength, and intrinsic neurophysiology. Female mice showed more robust reward-seeking behavior. Increasing the frequency of stimulation intensified this behavior in females, while males required higher frequencies and repeated testing days to increase their reward-seeking behavior. Surprisingly, optogenetically stimulating the ILC terminals in the NAcSh in brain slices resulted in stronger responses in males. More consistent with the behavioral data, female MSNs displayed higher intrinsic excitability. Our results suggest that there are sex differences in motivated behavior, driven by glutamatergic signaling in the ILC-NAc circuit. Despite stronger ILC-based glutamatergic signaling in males, heightened intrinsic excitability of MSNs in females seems to be the driving force behind this sex difference in reward-seeking behavior. These findings contribute to our understanding of the neural mechanisms behind sex-based differences in motivation and their potential implications for substance use disorders.


Assuntos
Núcleo Accumbens , Caracteres Sexuais , Camundongos , Animais , Feminino , Masculino , Humanos , Núcleo Accumbens/fisiologia , Neurônios/fisiologia , Córtex Cerebral
19.
Sci Rep ; 13(1): 22602, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38114559

RESUMO

Fear learning is a critical feature of survival skills among mammals. In rodents, fear learning manifests itself through direct experience of the aversive event or social transmission of aversive stimuli such as observing and acting on conspecifics' distress. The neuronal network underlying the social transmission of information largely overlaps with the brain regions that mediate behavioral responses to aversive and rewarding stimuli. In this study, we recorded single cell activity patterns of nucleus accumbens (NAc) core neurons using in vivo optical imaging of calcium transients via miniature scopes. This cutting-edge imaging methodology not only allows us to record activity patterns of individual neurons but also lets us longitudinally follow these individual neurons across time and different behavioral states. Using this approach, we identified NAc core single cell ensembles that respond to experienced and/or observed aversive stimuli. Our results showed that experienced and observed aversive stimuli evoke NAc core ensemble activity that is largely positive, with a smaller subset of negative responses. The size of the NAc single cell ensemble response was greater for experienced aversive stimuli compared to observed aversive events. Our results also revealed sex differences in the NAc core single cell ensembles responses to experience aversive stimuli, where females showed a greater accumbal response. Importantly, we found a subpopulation within the NAc core single cell ensembles that show a bidirectional response to experienced aversive stimuli versus observed aversive stimuli (i.e., negative response to experienced and positive response to observed). Our results suggest that the NAc plays a role in differentiating somatosensory experience from social observation of aversion at a single cell level. These results have important implications for psychopathologies where social information processing is maladaptive, such as autism spectrum disorders.


Assuntos
Neurônios , Núcleo Accumbens , Feminino , Animais , Masculino , Núcleo Accumbens/fisiologia , Neurônios/fisiologia , Medo , Mamíferos
20.
Soc Cogn Affect Neurosci ; 18(1)2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-37952225

RESUMO

European Americans view high-intensity, open-mouthed 'excited' smiles more positively than Chinese because they value excitement and other high arousal positive states more. This difference is supported by reward-related neural activity, with European Americans showing greater Nucleus Accumbens (NAcc) activity to excited (vs calm) smiles than Chinese. But do these cultural differences generalize to all rewards, and are they related to real-world social behavior? European American (N = 26) and Chinese (N = 27) participants completed social and monetary incentive delay tasks that distinguished between the anticipation and receipt (outcome) of social and monetary rewards while undergoing Functional Magnetic Resonance Imaging (FMRI). The groups did not differ in NAcc activity when anticipating social or monetary rewards. However, as predicted, European Americans showed greater NAcc activity than Chinese when viewing excited smiles during outcome (the receipt of social reward). No cultural differences emerged when participants received monetary outcomes. Individuals who showed increased NAcc activity to excited smiles during outcome had friends with more intense smiles on social media. These findings suggest that culture plays a specific role in modulating reward-related neural responses to excited smiles during outcome, which are associated with real-world relationships.


Assuntos
Emoções , Motivação , Humanos , Núcleo Accumbens/fisiologia , Expressão Facial , Recompensa , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...